Benutzer-Werkzeuge

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
logik:schlussformen:modus_ponendo_tollens [13.02.21, 22:04:56]
sascha [Modus ponendo tollens]
logik:schlussformen:modus_ponendo_tollens [20.10.21, 22:10:29] (aktuell)
sascha [Fehlschlüsse]
Zeile 1: Zeile 1:
 ====== Modus Ponendo Tollens ====== ====== Modus Ponendo Tollens ======
  
-Auch abgekürzt <html><abbr lang="la" title="Modus ponendo tollens">MPT</abbr></html>. Einer der elementaren (gültigen) logischen Schlussfiguren. Er hat die Form:+Auch abgekürzt <html><abbr lang="la" title="Modus ponendo tollens"></html>MPT<html></abbr></html>. Einer der elementaren (gültigen) logischen Schlussfiguren. Es beruht auf einer [[logik:begriffe:kontravalenz|Kontravalenz]] und hat die Form:
  
-> <html><code title="nicht beides, und B"></html>:not:(A :and: B)<html></code></html(nicht beides, und B) +> <html><table class="layout"> 
-> <html><code title="es ist A">A</code></html+<tr><td><code title="oder B, aber nicht beides"></html>A :xor: B<html></code> </td><td>   –   </td><td> A <i>oder</i> B, <i>aber nicht beides</i></td></tr> 
-> <html><code title="also B">∴ ¬B</code></html   (//also nicht B//)+<tr><td><code title="[ist wahr]">A</code> </td><td>   –   </td><td>A <i>ist wahr</i></td></tr
 +<tr><td colspan="3"><hr /></td></tr> 
 +<tr><td><code title="also nicht B">∴ ¬B</code> </td><td>   –   </td><td><i>daraus folgt</i>: <i>ist nicht wahr</i></td></tr> 
 +</table></html>
  
 Zum Beispiel ist das Folgende ein gültiger <html><abbr lang="la" title="Modus ponendo tollens">MPT</abbr></html>: Zum Beispiel ist das Folgende ein gültiger <html><abbr lang="la" title="Modus ponendo tollens">MPT</abbr></html>:
  
-Es kann nicht sein, dass es sowohl regnet, als auch die Straße trocken ist. +Eine natürliche Zahl ist entweder //gerade// oder //ungerade// (aber nicht beides) 
-Es regnet, +//x// ist gerade. 
-> also ist die Straße nicht trocken.+> also ist //x// nicht ungerade.
  
 +Da die Kontravalenz //kommutativ// ist, kann ebenso geschlossen werden:
 +
 +> …
 +> //x// ist ungerade.
 +> also ist //x// nicht gerade.
 +
 +<html><p class="info-box"></html>**Hinweis:** Zahlen können auch //weder// gerade //noch// ungerade sein (z.B. rationale Zahlen). Werden solche Möglichkeiten nicht ausgeschlossen (etwa indem man nur //natürliche// Zahlen betrachtet), kann man leicht den u.g. logischen Fehlschlüsse erliegen.<html></p></html>
 ===== Name ===== ===== Name =====
  
Zeile 26: Zeile 36:
 Die folgende Tabelle stellt den //Modus ponendo tollens// und die wichtigsten Fehlschlüsse gegenüber: Die folgende Tabelle stellt den //Modus ponendo tollens// und die wichtigsten Fehlschlüsse gegenüber:
  
 +<html><div class="print-wide"></html>
 | ^  //Modus ponendo tollens// \\ (gültiger Schluss)  ^^ ^  [[logik:fehlschluesse:negation_einer_konjunktion|Negation einer Konjunktion]]  \\ (Fehlschluss)  ^^  [[logik:fehlschluesse:affirmation_einer_disjunktion|Affirmation einer Disjunktion]]  \\ (Fehlschluss)  ^^ | ^  //Modus ponendo tollens// \\ (gültiger Schluss)  ^^ ^  [[logik:fehlschluesse:negation_einer_konjunktion|Negation einer Konjunktion]]  \\ (Fehlschluss)  ^^  [[logik:fehlschluesse:affirmation_einer_disjunktion|Affirmation einer Disjunktion]]  \\ (Fehlschluss)  ^^
-^Prämisse 1 |  <html><span title="Nicht beides, und B"></html>:not:(A :and: B)<html></span></html>  || |  <html><span title="Nicht beides, A und B"></html>:not:(A :and: B)<html></span></html>  ||  <html><span title="A oder [inkl.] B"></html>A :or: B<html></span></html>  || +^Prämisse 1 |  <html><span title="oder B, aber nicht beides"></html>:xorB<html></span><br /><small></html>(A //oder// B, //aber nicht beides//)<html></small></html>  || |  <html><span title="nicht beides, A und B"></html>:not: (A :and: B)<html></span><br /><small></html>(//nicht beides//, A //und// B)<html></small></html>  ||  <html><span title="A oder [inkl.] B"></html>A :or: B<html></span><br /><small></html>(A oder B)<html></small></html>  || 
-^Prämisse 2 |  A  |  B  | |  <html><span title="nicht A"></html>:not:A<html></span></html>  |  <html><span title="nicht B"></html>:not:B<html></span></html>  |  A  |  B  | +^Prämisse 2 |  A  |  B  | |  <html><span title="nicht A"></html>:not:A<html></span><br /><small>(nicht A)</small></html>  |  <html><span title="nicht B"></html>:not:B<html></span><br /><small>(nicht B)</small></html>  |  A  |  B  | 
-^Konklusion |  <html><span title="nicht B"></html>:not:B<html></span></html>  |  <html><span title="nicht A"></html>:not:A<html></span></html>  | |  <html><span class="invalid short">B</span></html>  |  <html><span class="invalid short">A</span></html>  |  <html><span title="nicht B" class="invalid short2"></html>:not:B<html></span></html>  |  <html><span title="nicht A" class="invalid short2"></html>:not:A<html></span></html>  |+^Konklusion |  <html><span title="nicht B"></html>:not:B<html></span><br /><small>(nicht B)</small></html>  |  <html><span title="nicht A"></html>:not:A<html></span><br /><small>(nicht A)</small></html>  | |  <html><span class="invalid short">B</span></html>  |  <html><span class="invalid short">A</span></html>  |  <html><span title="nicht B" class="invalid short2"></html>:not:B<html></span><br /><small>(nicht B)</small></html>  |  <html><span title="nicht A" class="invalid short2"></html>:not:A<html></span><br /><small>(nicht A)</small></html>  | 
 +<html></div></html> 
 + 
 +<html><p class="info-box"></html>**Hinweis:** Die [[logik:begriffe:kontravalenz|Kontravalenz]] ''A :xor: B'' (A //oder// B, //aber nicht beides//) sowie die //negative// [[logik:begriffe:konjunktion|Konjunktion]] '':not:(A :and: B)'' (//nicht beides//, A //und// B) sind //gleichwertig//, d.h. es gilt: ''A :xor: B'' = '':not:(A :and: B)''.<html></p></html> 
 ===== Siehe auch ===== ===== Siehe auch =====
  
   * [[logik:begriffe:konjunktion|Konjunktion]] – „und“-Verknüpfung   * [[logik:begriffe:konjunktion|Konjunktion]] – „und“-Verknüpfung
   * [[logik:schlussformen:modus_tollendo_ponens|Modus tollendo ponens]] – verwandte Schlussform   * [[logik:schlussformen:modus_tollendo_ponens|Modus tollendo ponens]] – verwandte Schlussform
 +  * [[denkfehler:allwissenheitsirrtum:sherlock_holmes_fehlannahme|Sherlock-Holmes Fehlannahme]]
  
 ===== Weitere Informationen ===== ===== Weitere Informationen =====
  
   * [[wpde>Modus ponendo tollens]] auf Wikipedia   * [[wpde>Modus ponendo tollens]] auf Wikipedia